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Abstract. The use of sweet lupins as a new food is resulting in an increasing 
number of cases of allergy reactions, particularly in atopic patients with other 
pre-existing legume allergies. We performed an extensive in silico analysis of 
seed β-conglutins, a new family of major allergen proteins in lupin, and a com-
parison to other relevant food allergens such as Ara h 1. We analyzed surface 
residues involved in conformational epitopes, lineal B- and T-cell epitopes vari-
ability, and changes in 2-D structural elements and 3D motives, with the aim to 
investigate IgE-mediated cross-reactivity among lupin, peanut, and other differ-
ent legumes. 

Our results revealed that considerable structural differences exist, parti-  
cularly affecting 2-D elements (loops and coils), and numerous micro-hetero-
geneities are present in fundamental residues directly involved in epitopes  
variability.  

Variability of residues involved in IgE-binding epitopes might be a major 
contributor to the observed differences in cross-reactivity among legumes. 

Keywords: β-conglutins, Computational Biology, Epitopes, Diagnosis, Food 
Allergy, Legume Seeds, Lupinus angustifolius L., Protein Structure Modeling, 
IgE-binding, Immunotherapy, Recombinant Allergen, Vicilin-Like Proteins. 

1 Introduction 

Lupin is a popular PULSE (the edible seeds of plants in the legume family) world-
wide, which has traditionally been consumed as source of proteins since long ago. 
 
                                                           
* Corresponding author. 
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From more than 450 species of the Lupinus family, only lupin known as ‘‘sweet lu-
pins’’ such as white lupin (Lupinus albus), yellow lupin (Lupinus luteus), and blue 
lupin (Lupinus angustifolius) are being used in food manufacturing. Flour of raw lu-
pin is increasingly used as food ingredient because of its nutritional value (rich in 
protein and fibre, poor in fat and gluten-free) [1].  

Furthermore, ingestion of lupin-containing foods has been associated with the pre-
vention of obesity, diabetes, and eventually cardiovascular disease. Recently, hypo-
cholesterolaemic properties have been demonstrated for lupin conglutin γ proteins, 
which may decrease the risk of cardiovascular disease [2].  

Lupin belongs to the Fabaceae family. As all edible legume seeds, the major pro-
tein fraction of lupin seeds is associated with storage proteins, which could be classi-
fied in the cupin and prolamin superfamilies, based in structure, solubility and/or 
sedimentation properties.  

The two major lupin storage proteins are α-conglutin (legumin-like or 11S globu-
lin), and ß-conglutin (vicilin-like or 7S globulin). Vilicin proteins are characterized by 
two cupin (barrel-shaped) domains constituted by α-helices. Another family with a 
cupin-like structure, γ-conglutin (basic 7S-globulin), displays tetrameric structure 
integrated by two different disulphide-linked monomers. In contrast, δ-conglutin (2S 
sulphur-rich albumin) contains 2 disulphide-linked proteins with the typical cysteine-
rich prolamin structure [3]. 

Sweet lupin seeds seem to be particularly promising as a source of innovative food 
ingredients due to averaged protein content similar to soybean and an adequate com-
position of essential amino acids. Foods based on sweet lupin proteins include flour 
for bakery, pasta formulations, gluten-free products and other food items, which are 
gaining more attention from industry and consumers because the large number of 
health-promoting benefits described above [2]. 

On the other hand, with the rapid introduction of novel foods and new ingredients 
in traditional foods, the number of reports of allergic reactions to lupin proteins is also 
rising, either as primary lupin allergy or as a result of cross-reactivity to other legume 
proteins, particularly peanut, soybean, lentil, bean, chickpea, and pea [4]. The most 
common clinical pattern of lupin allergy is the triggering of an allergic reaction via 
ingestion of lupin in peanut-allergic individuals, although most commonly triggered 
via ingestion, inhalation and occupational exposure in individuals without peanut 
allergy has also been reported. The prevalence varies considerably between studies, 
but a prevalence of about 1-3% in the general population and 3–8% among childrens 
is the consensus [5]. Considering the increasing number of clinical cases of lupin 
allergy reported in the literature, lupin was added in 2008 to the list of foods that must 
be labelled in pre-packaged foods as advised by the European Food Safety Authority 
(EFSA) (http://www.efsa.europa.eu/). 

Overall, cross-reactivity is the result of IgE-binding to commonly shared epitopes 
among proteins, i.e. different legume seed proteins, with conserved steric domains 
(conformational epitopes), and/or amino acid sequences (lineal epitopes). 

Given the increase in the number of cases of lupin allergy and the frequency of 
cross-reactivity with other legume seed proteins, the possible involvement of individ-
ual major lupin proteins, i.e. β-conglutins, and their counterparts from other legumes 
in cross-allergy is of major concern and of great interest to investigate.  
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In the present study, we add to our results an extensive in silico analysis including 
allergen structure modeling based epitopes (T- and B-cells) identification, aiming to 
uncover common-shared and specific epitopes, and providing a comprehensive in-
sight of the broad cross-allergy among legume proteins, as well as specific allergic 
reactions to lupin β-conglutins. This is an important step towards understanding the 
molecular basis of the allergy phenomenon, particularly cross-reactivity, and towards 
the development of safe and efficacious diagnosis tools and immunotherapy to lupin-
related food allergy.  

2 Methods 

2.1 Allergen Sequences 

We retrieved allergen sequences necessary for the present study from GenBank/ 
EMBL Database: β-conglutin 1 or Lup an 1 (F5B8V9), β-conglutins 2 to 7 (F5B8W0 
to F5BW5), Ara h 1 (P43237, P43238), Gly m 5 (O22120), Len c 1 (Q84UI0, 
Q84UI1), Gly m β-conglycinin (P25974), Vig r 2 (Q198W3, B1NPN8). 

2.2 Phylogenetic Analysis of Food Allergen Sequences 

Allergen protein sequences from legumes (lupin, peanut, soybean, Mung bean, lentil, 
chickpea, pea, mezquite) were retrieved and used to perform a phylogenetic analysis. 
Sequences alignments were performed by using ClustalW multiple sequence align-
ment tool (www.ebi.ac.uk/Tools/clustalw) according to Jimenez-Lopez et al. [6]. 
Trees were visualized using Treedyn (www.treedyn.org). 

2.3 Template Assessment 

All allergen sequences were searched for homology in the Protein Data Bank (PDB). 
Suitable homologous templates were selected by using Swiss-Prot database (swiss-
model.expasy.org) and BLAST server (ncbi.nlm.nih.gov/) employing fold recognition. 

2.4 Proteins Homology Modeling 

Sequences were modelled through SWISS-MODEL via the ExPASy web server 
(swissmodel.expasy.org), by using the top PDB closest template structures previously 
assessed. Models refinement of 3D structural errors, and structural assessment were 
performed using stereo-chemical and energy minimization parameters [7]. 

2.5 Structural Comparison and Evolutionary Conservational Analysis 

Allergen proteins structure comparison was performed by superimposition to calcu-
late average distance between their Cα backbones. Protein models were submitted to 
ConSurf server (consurf.tau.ac.il) to generate evolutionary related conservation 
scores, in order to identify functional region in the proteins. Functional and structural 
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key residues were confirmed by ConSeq server (conseq.tau.ac.il). 2-D and 3D were 
visualized and analyzed using PyMol software (www.pymol.org). 

2.6 Solvent Accessible Surface Area and Poisson–Boltzmann Electrostatic 
Potential 

Solvent accessible surface area (SASA), defined as the percentage of surface area of a 
biomolecule that is accessible to a solvent for each residue was calculated by using 
the GETAREA v1.1. program (curie.utmb.edu/getarea.html). The electrostatic Pois-
son-Boltzmann (PB) potentials for the built structures were obtained [7,8]. 

2.7 Allergenicity Profile Assessment 

Allergenicity of lupin and other legume allergen sequences was checked by a full 
FASTA alignment in the Structural Database of Allergenic Proteins (SDAP) (Fer-
mi.utmb.edu/SDAP). Allergenicity profile was assessed by combination of different 
parameters: hydrophobicity, antigenicity and SASA [9]. Values of absolute surface 
area (ASA) of each residue were also calculated by DSSP program (swift.cmbi.ru.nl/ 
gv/dssp), and transformed to relative values of ASA and visualized by ASAView 
(www.netasa.org/asaview). 

2.8 Linear and Conformational B-cell Epitopes Analysis 

For determination of linear (continuous) epitopes, the allergen proteins sequences were 
submitted to ABCpred (uses artificial neural networks, www.imtech.res.in/raghava), 
BepiPred 1.0b (based on hydrophobicity scale with a Hidden Markov Model, www. 
cbs.dtu.dk), BCPREDS (uses support vector machine, ailab.cs.iastate.edu/ bcpreds), 
Bcepred (based on a combination of physico-chemical properties, www.imtech. 
res.in/raghava), and COBEpro (uses support vector machine, scratch.proteomics.ics. 
uci.edu). Linear and discontinuous antibody epitopes based on a protein antigen's 3D 
structure were predicted using Ellipro (http://tools.immuneepitope.org/tools/ElliPro/ 
iedb_input/, discontinuous epitopes are defined based on PI values and are clustered 
based on the distance R (Å) between residue's centers of mass, tools.immuneepitope. 
org), and Discotope (tools.immuneepitope.org) webservers.  

The epitopes identified frequently by most of the tools were selected [9,10]. 

2.9 T-cell Epitopes Identification and Analysis 

The identification of MHC Class-II binding regions for all the allergen sequences was 
performed by using neuronal networks and quantitative matrices derived from pub-
lished literature. Promiscuous peptides binding to multiple HLA class II molecules 
were selected. The analysis was made by using the TEPITOPE software (www.  
bioinformation.net/ted), with a threshold of 5% for the most common human HLA-DR 
alleles [DR1, DR3, DR4, DR7, DR8, DR5 and DR2] among Caucasian population 
[10], and covering a large proportion of the peptides that bind with human HLA. 
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3 Results 

3.1 Searching for Allergen Proteins Templates 

We used the Swiss-model server to identify the best possible templates to build aller-
gen structures, finding high scores and very low E-values (ranging 12E−34 to 7E−42) 
for the templates retrieved from Protein Data Bank (PDB) database and used for ho-
mology modeling: lupin β-conglutins (1uijA, 2eaaB), Ara h 1 (3s7i, 3s7e), Gly m 5 
(1uijA), Len c 1 (1uijA), Gly m β-conglycinin (1uijA), Vig r 2 (2eaaB). 

 

Fig. 1. Lupin β-conglutins structural analysis. A) Cartoon and surface representation views  
of conglutin β1 rotated 180°, showing the surface electrostatic potential clamped at red (-10) or 
blue (+10). 2-D elements (α-helices, β-sheets, coils) were depicted in cartoon model, showing 
main proteins domains (mobile arm and cupin domain). B) 3D structures of conglutins β2 to β7 
were depicted as a cartoon diagram. α-helices, β-sheets and coils are depicted in red, yellow  
and, green respectively, integrating main proteins domains. C) Superimpositions showed  
the close structural relationship with allergens from other legumes such as peanut (Ara h 1), 
soybean (β-conglycinin), Mung bean (Vig r 2), and lentils (Len c 1). Å = Armstrong; MA = 
mobile arm.  
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Figure 1 showed that lupin β-conglutins are characterized by a surface negatively 
charged, a domain from the Cupin superfamily constituted by 2 barrels of 8-10  
α-helices each, and a mobile arm, which position may be different depending of the  
β-conglutin form. One of these barrels followed the Rossmann fold structure, typical-
ly found in oxidoreductase enzymes.  

2-D elements comparison by superimposition among allergens showed a compara-
ble low values (< 1Å) of structural differences, when compared Cupin superfamily 
domain, since the mobile arm is absent in these allergens. Overall, β-conglutins were 
found structurally close to Len c 1 and most distantly related to the Gly m 5 allergen.  

3.2 Structural Assessment of the β-conglutin 1 to 7, Gly m 5, Len c 1, Gly m 
Conglycinin, and Vig r 2 Structural Models 

Different molecular tools (stereochemistry, energy minimization) were used to assess 
the quality of the models built for this study. A general quality assessment parameter 
as QMEAN displayed adequate values for all models. Most of the residues of the main 
chain of built models were located in the acceptable regions of the Ramachandran plot 
shown by Procheck analysis. In addition, Z-scores returned from ProSa indicated that 
structures showed negative interaction energy and within the lowest energy range. In 
addition, the Z-scores were within the range usually found for templates used for 
allergen structure modeling. 

3.3 Phylogenetic Analysis 

We analyzed the relationships between lupin β-conglutin proteins and allergens from 
other species. The data clearly reveal five established groups/clusters. We have identi-
fied 5 main groups, where β-conglutins were grouped with allergens of 7S-globulin 
nature (Fig. 2). 

3.4 Identification of Highly Antigenic Regions in Plant Profilins 

Physicochemical parameters such as hydrophobicity, accessibility, exposed surface, 
and antigenic propensity of polypeptide chains have been used to identify continuous 
epitopes (see methods section). In our analysis, antigenicity determinants were as-
signed by locating the positive peaks in hydrophilicity plots, and identifying the re-
gions of maximum potential of antigenicity (data not shown).  

We identified up to 8 regions in lupin β-conglutins, with high potential of antigen-
icity, 7 regions in Ara h 1, 7 regions in Gly m 5, 8 regions in β-conglycinin, 7 regions 
in Vig r 2, 4 in Len c 1, and 5 in Pis s 2 (data not shown). These regions with high 
antigenicity correlated well with the lineal T- and B-cell and conformational epitopes 
identified and analyzed in the present study.  

The highest differences in terms of antigenicity regions polymorphism correspond 
to lupin β-conglutins, while the lowest variable allergen was Len c 1 (data not 
shown). 
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the present study has been identified commonly shared T- and B-cell lineal and con-
formational epitopes in lupin and allergens from other legumes, which are located in the 
globular (Cupin Superfamily) characteristic domain. The largest number of epitopes has 
been identified in conglutin β 1, which may be the reason why Lup an 1 is currently the 
main allergen among the beta forms. Several of these epitopes are common to other 
legume proteins. However, others are not well-conserved, finding a noticeable degree of 
polymorphism. We have identified surface patterns (conformational epitopes), as well 
as multiple regions (B- and T-cell epitopes) in legume allergens, including lupin, exhib-
iting differences in length and variability. Furthermore, we have found shared common 
B- and T-cell epitopes among these legume allergens, as well as epitopes differential-
ly distributed in specific allergens. The variability in their surface residues might  
contribute to generate areas of the protein enable of being differentially recognized as 
Th2- inducing antigens. Depending on the location of these polymorphic residues, 
recognition by IgE/IgG may be also affected [12]. 

Thus, we propose that the presence of several of these epitopes (T- and B-cell) is 
the main reason for cross-allergenicity reactions among legume proteins, which  
however react differentially with lupin β -conglutins forms and between them. The 
extension of the reactions may be directly linked to the residues variability of these 
epitopes. It has been reported serological cross-reactivity among legume allergens [4], 
and Lup an 1 (Ara h1, Len c 1 and Pis s 1). IgE reactivity may not always be related 
to clinical cross-reactivity (leading to allergy symptoms), which has been observed in 
lupin, peanut and pea. In this regard, we have found that six T-cell epitopes are shared 
between Lup an 1 and Len c 1. From these, four epitopes are commonly found in Ara 
h 1 and Pis s 1 as well. Furthermore, one of these four epitopes is the “T- solo” or T1 
located in the mobile arm of β -conglutins. This epitope may play a key role in specif-
ic cross-reactivity between legume seeds proteins and lupin β -conglutins as one of 
the four main families (α, β, γ, δ) of seed storage proteins in lupin. 

Molecular modeling of proteins throughout computational biology tools help  
identifying specific regions, which could be candidates for the development of pep-
tide-based immunotherapeutic reagents for allergy, while conserved regions could be 
responsible of the cross-reaction between allergens [10]. Epitopes prediction based on 
knowledge derived from structural surface features such as increased solvent accessi-
bility, backbone flexibility, and hydrophilicity [7,9,10]. Such predictions were found 
to correlate well with antigenicity in the present study. At structural level, antigenic 
determinants may be integrated by 2-D structure elements, which protrude from the 
surface of the protein, such as coils and loops [10]. Our results have shown that con-
formational epitopes are these more affected by 2-D structure elements, which are 
mostly integrated by short α-helices and coils (Fig. 1 and 3). Variability in sequence 
and length of these 2-D elements may additionally increase the differences and the 
extension of the cross-allergenic reactions between legume allergens [13].  

On the other hand, linear B- and/or T- cell epitopes may play most important roles 
in cross-reactivity between food allergens [14], since food processing or digestion 
may increase the number or the accessibility of IgE binding epitopes. Thus, some 
food allergens have been described to lead to a loss of some or all the B-cell epitopes 
(but not the T-cell epitopes) by denaturalization/digestion [15]. In a similar fashion, 
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vicilin-like allergens such as Ara h 1 and Lup an 1 also share thermal stability.  
B- and T-cell responses have a defining and differential recognition of antigenic  
epitopes, and their localization in the allergen does not necessarily coincide. T-cell 
receptor recognizes only the linear amino acid sequence [16]. In contrast, B-cell 
epitopes recognized by IgE antibodies are either linear or conformational and are 
located on the surface of the molecule accessible to antibodies. The extension of the 
epitope may range from 5 to 8 or longer amino acids for IgE to be able of binding to 
the epitope [17-20]. However, we have identified lineal B-cell epitopes in lupin β-
conglutins and the other legume allergens with a wide range of amino acid lengths, 
and overlapping with conformational epitopes. 
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